Northwest National Marine Renewable Energy Center: Vision, Progress & Goals

Belinda Batten Director, NNMREC

BOEM Meeting, Portland 12 April 2012

Outline

- Overview of Northwest National Marine Renewable Energy Center
- NNMREC Open Ocean Test Facility, Newport Oregon
- NNMREC Plans for Grid Connect Test Facility

US DOE National Marine Renewable Energy Centers

The Northwest National Marine Renewable Energy Center (NNMREC)

- A partnership between Oregon State University & the University of Washington funded by the U.S. Department of Energy
- Develop a full range of capabilities to support wave and tidal energy development
- Center activities are structured to:
 - Facilitate commercialization of marine energy technology,
 - Inform regulatory and policy decisions,
 - Close key gaps in scientific understanding,
 - Educate the first generation of marine renewable energy engineers and scientists.

OSU's Leading Efforts in Wave Energy Research

Environmental

Technical Testing/Demonstration Forecasting Survivability/Reliability Advanced Materials Device/Array Optimization Sediment Transport Electromagnetic Fields Benthic Ecosystems Acoustics Site Characterization

Social Fisheries/Crabbing Outreach/Engagement Existing Ocean Users Local/State Economies

Environmental Studies at HMSC

- NNMREC Environmental "Seed Projects"
 - Seabird colony gap analysis and at-sea distributional information
 - Sound propagation model development and calibration
 - Population dynamics of mysid shrimp in relation to natural and artificial structures in habitats targeted for wave energy development

• OWET Collaborations

- Benthic community baseline characterization
- Gray whale distribution and movement patterns

Developer Scaled Testing Support

In 2011 NNMREC tested five different small scale technologies in our facilities

Newport Open Ocean Test Facility

- Permitted Open-Ocean Test Site
- Available Year round
- 2 devices can test concurrently
- Testing Scenarios:
 - Self-contained testing
 - Connected to ship
 - Connected to Ocean Sentinel

Final 1x1 nm site 44.697764 -124.148319 -124 108 Yaquina Head NFPA. study area Newport, 44.65403 , -124.1456 Oregon Territorial Sea (3nm) Yaquina Bay

Wave Resource Worldwide

Grid-Connected Site: The Oregon Advantage

- Resource required for TRL 9; summer mild for TRL 5-7
- Environmental testing results can be leveraged along the US West Coast
- Proximity to manufacturers
- Strong state support
- Oregon Wave Energy Trust
- Site accessibility
- NNMREC's "one stop shopping" for testing
- Oregon State University research leadership

Grid-Connected Site: Feasibility Study

- Four sites considered: Clatsop County, Newport, Reedsport, Coos Bay
- Desired Site Characteristics
 - 60m in depth, 80 100m optimal
 - Sandy or soft bottom preferred
 - Proximity to deep water port (min 30 35m depth)
 - Suitable on-shore location for monitoring
 - Proximity to Interconnection: Maximum desired cable length: 3 5 miles
 - Proximity to O&M facilities: 1 hr transit each way
 - Minimal negative effects on environment and prior use

Test Facility Structure

- Bury cable from shore to test site
- Develop shore-side data acquisition system, grid emulator and load bank
- Shore-side infrastructure; connect to grid

Figure 6 – Shore MOTB Concept, 1nm by 1nm Offshore Area

Newport, OR

- Proximity to current test site; City leaders have vision of marine science & engineering hub
- Strong relationship with fishing community
- Shallowest port of those considered
- Good proximity to OSU's ship operations, HMSC and Corvallis
- Good proximity to NSF's OOI effort
- Slowly increasing water depth

Our Process

- Goal: Eligibility for USDOE funding this year (2012)
- Meet with smaller groups of community leaders to identify issues of concern and interest in each area
- Prepare preliminary development plans for sites
- Meet with larger community group to vet local options
- Select site
- Prepare Development Plan
- Apply for funding

Thank you

Belinda Batten, NNMREC Director, 541.737.9492, <u>belinda.batten@oregonstate.edu</u> Meleah Ashford, NNMREC Program Manager, 541.737.6138, <u>meleah.ashford@oregonstate.edu</u>

BACKUP SLIDES

Ocean Sentinel MOTB

- Based on 6m NOMAD design, working with AXYS Technologies
- Initial average power rating 100kw average
- Load bank: power processing & dissipation
- Data transmission via umbilical & wireless telemetry

Wave Energy Devices

Wave Energy Devices

Clatsop County, OR

- Camp Rilea, Oregon's only DoD facility located here (National Guard)
- Shortest distance to Portland and Columbia River
- Potentially less impact on commercial fishing
- Longest transmission distance:
 8.9NM to 75m depth
- Slowly increasing water depth

Reedsport, **O**R

- Proximity to OPT project—possibility for shared infrastructure (cable and on-shore assets)
- City leaders appear to be receptive to dual use
- Moderate proximity to very good deep water, all weather port (Coos Bay)
- Good proximity to maintenance location (Winchester Bay)
- Rapidly increasing water depth

Coos Bay, OR

- Proximity to possible Principle Power offshore wind project—possibility for shared infrastructure (cable and on-shore assets)
- Very close proximity to very good deep water, all weather port
- Shortest transmission route
- Longest driving distance from PDX
- Rapidly increasing water depth
- Best site for deployment and maintenance

NOAA Buoys for Wave Data

Average Power at Buoys

Station I.D.	Latitude (deg.)	Longitude (deg.)	Depth (m)	Distance (km)	Avg. Power (kW/m)	
46002	42.57	-130.46	3500	480	51	
46050	44.641	-124.5	123	35	35	
46059	37.983	-129.997	4600	560	45	
46013	38.242	-123.301	116	25	29	
46001	56.3	-148.021	4200	300	44	
46083	58.243	-137.993	136	45	33	
51001	23.445	-162.279	3430	260	30	_N
51201	21.673	-158.116	200	6	17 🖌	C
51202	21.415	-157.678	100	6	16 🛌	E

Average Power at Buoys

Station I.D.	Latitude (deg.)	Longitude (deg.)	Depth (m)	Distance (km)	Avg. Power (kW/m)	
46002	42.57	-130.46	3500	480	51	Newport OR
46050	44.641	-124.5	123	35	35 🖌	
46059	37.983	-129.997	4600	560	45	
46013	38.242	-123.301	116	25	29	
46001	56.3	-148.021	4200	300	44	
46083	58.243	-137.993	136	45	33	
51001	23.445	-162.279	3430	260	30	North
51201	21.673	-158.116	200	6	17 🖌	Oahu
51202	21.415	-157.678	100	6	16 💌	East
						🔊 Oahu

Average Power at Buoys

	Avg. Power (kW/m)	Distance (km)	Depth (m)	Longitude (deg.)	Latitude (deg.)	Station I.D.
Newpor	51	480	3500	-130.46	42.57	46002
OR	35 🖌	35	123	-124.5	44.641	46050
Bodega	45	560	4600	-129.997	37.983	46059
Bay CA	29 🖌	25	116	-123.301	38.242	46013
Yakutat	44	300	4200	-148.021	56.3	46001
AK	33 🖌	45	136	-137.993	58.243	46083
North	30	260	3430	-162.279	23.445	51001
Oahu	17 🖌	6	200	-158.116	21.673	51201
East	16 🛌	6	100	-157.678	21.415	51202
🔊 Oahu						

Seasonal Average Power

